
Performance Evaluation of an Agent-Based
Resource Management Infrastructure for Grid Computing

Junwei Cao, Darren J. Kerbyson, and Graham R. Nudd
High Performance Systems Laboratory, Department of Computer Science,

University of Warwick, Coventry, CV4 7AL, U. K.
{junwei, djke, grn}@dcs.warwick.ac.uk

Abstract

Resource management is an important infrastructure
in the grid computing environment. Scalability and
adaptability are two key challenges in the
implementation of such complex software systems. In this
work we introduce a new model for resource
management in a metacomputing environment using a
hierarchy of homogeneous agents that has the capability
of service discovery. The performance of the agent
system can be improved using different combinations of
optimisation strategies. A modelling and simulation
environment has been developed in this work that
enables the performance of the system to be investigated.
A simplified model of the resource management
infrastructure is given as a case study and simulation
results are included that show the impact of the choice of
performance optimisation strategies on the overall
system performance.

1. Introduction

A Computational Grid requires both hardware and
software infrastructures to provide dependable,
consistent, pervasive, and inexpensive access to high-end
computational capability [11,13]. An ideal grid
environment should provide access to the available
resources in a seamless manner, which requires many
design features. These include administrative hierarchy,
communication services, information services, naming
services, resource management and scheduling, security
and authorization etc [2].

The overall aim of the resource management is to
efficiently schedule applications that need to utilize the
available resources in the metacomputing environment.
In essence, it should turn a radically heterogeneous
environment into a virtual homogeneous one, which
introduces two key challenges:

Scalability. The grid may potentially encompass all high
performance computing resources. A given component
of the grid will have it’s own functions, resources, and
environment. These are not necessarily geared to work
together in the overall grid. They may be physically
located in different organizations and may not be
aware of each other.

Adaptability. A grid is a dynamic environment where the
location, type, and performance of the components are
constantly changing. For example, a component
resource may be added to, or removed from, the grid
at any time. These resources may not be entirely
dedicated to the grid, hence their computational
capabilities will vary over time.

Resource management and scheduling infrastructures
must be provided to address these challenges. Existing
techniques cannot meet the requirements of both
scalability and adaptability simultaneously. In this work,
we present a new model for the resource management
infrastructure using a hierarchy of homogeneous agents
which has the capability of service discovery.

An agent-based hierarchical model is used to address
the problem of the scalability, which is an extension of
our previous work [6]. Software agents have been
accepted to be a powerful high-level abstraction for the
modelling of complex software systems [12].

In this work, an agent is considered to be both a
service provider and a service requestor. Service is an
important concept in many distributed computing and
communication infrastructures (e.g. Jini [1], Bluetooth
[3]). We use service here to describe the details of a
resource within the grid. Resource management,
scheduling, and allocation can be abstracted to the
processes of serviceadvertisementand servicediscovery.

Performance issues arise when service is advertised
and discovered in a large-scale multi-agent system.
Different optimisation strategies can be used to improve
the system efficiency. A performance modelling and
simulation environment has been developed that enables
the performance of the system to be investigated. A case

study, that models a simplified grid environment, is
included. Simulation results show the impact of the
choice of different performance optimisation strategies on
the efficiency of the resource management infrastructure.

This work is based on existing resource management
and prediction capabilities of the PACE toolset [4,5]. The
motivation to develop a Performance Analysis and
Characterization Environment (PACE) is to provide
quantitative data concerning the performance of
sophisticated applications running on local high
performance resources [15]. It is envisaged that the agent
infrastructure developed here will be amalgamated with
the capabilities of PACE for grid environments.

Several solutions have been offered that address to
some extent the issues of resource management and
scheduling. Our work is different from these in a number
of ways. Some of the principle existing work is described
below.

• Condor [16] – uses the matchmaker/entity structure
(which can be both provider and requestor), in which
the matchmaker becomes the bottleneck of the system
Achieving scalability is difficult, and focuses more on
protocol issues than on performance issues.

• Globus [8] – uses a Metacomputing Directory Service
(MDS) [10], which adopts the data representations
and API defined by the LDAP service [18]. It is
designed to meet requirements of both scalability and
dynamic resources. Performance issues have not been
a key consideration in its implementation.

• Hector [17] – uses a master/slave allocator to manage
the dynamic resources, in which the issue of
scalability is not addressed.

• Legion [9] – uses a Resource Management
Infrastructure (RMI) in which the information
collection is very similar to the information service in
Globus. Objects are used as the main system
abstraction throughout, whereas we use agents as a
high level abstraction.

• NetSolve [7] – uses an agent as a database and a
resource broker to implement resource management.
The coordination of different agents are not
considered in detail.

• Ninf [14] – the metaserver component monitors
multiple computing servers on the network, and
performs scheduling and load balancing of client
requests (similar to the agents in the NetSovle).

The rest of the paper is organised as follows: In
Section 2 the homogeneous agent hierarchy is presented.
In Section 3, the metrics used for the performance
evaluation of this hierarchy, and the different
optimisation strategies available are described. In Section
4 the simulation environment is described and results

from a case study concerning a small grid environment
are presented.

2. Agent-Based Hierarchical Model

In this section a homogeneous agent-based
hierarchical model is introduced as the basis of
understanding the service advertisement and discovery
mechanisms that can be used to implement the functions
of resource management and scheduling.

The hierarchical model is illustrated in Figure 1.
There is a single type of the component, the agent, which
is used to compose the whole system. This is an
abstraction of the computing resource in the software
infrastructure of the resource management. Each agent
has the same set of functions. They can send requests and
provide services. Every agent can act as a router between
a request and a service. In Figure 1 different terms are
used to differentiate the level of the agent in the
hierarchy. The broker is an agent that heads the whole
hierarchy, maintaining all service information of the
system. A coordinator is an agent that heads a sub-
hierarchy. A leaf-node is actually termed an agent in this
description.

B

C

A

A
C

A A
B

C

A

: Broker

: Coordinator

: Agent

Figure 1. Agent hierarchy

When a new agent wants to join the system, in the
hierarchical model, it will broadcast to find its nearest
existing agent. An agent can only have one connection to
an agent higher in the hierarchy to register with, but be
registered with many lower level agents. All requests that
enter a sub-hierarchy must arrive at the coordinator of
the sub-hierarchy first and then dispatched to the lower
agents. From the view of service providers, a sub-
hierarchy can be regarded just as an agent.

If an agent has the required service information, it can
contact the target agent directly. Otherwise, it must
search its local agents, or ask its upper agent, for a
service discovery (ie. to find an agent that can provide
the requested service). The lower or upper agent can also
ask other agents for assistance until the service

information is found. The agent can then connect directly
to the target and directly request the service. All
connections between the agents are broken after use of
the service is finished.

The services offered by an agent can change over
time. When this occurs, the corresponding service
information needs also to be updated. The dynamics of
this system increases the difficulty of resource
management and allocation. The essential issue is how
an agent advertises its services and also coordinates with
other agents to discover the required services in the most
efficient way.

Service Advertisement. The service information of an
agent can be advertised in the hierarchy (both up and
down). Different strategies can be used to decide
when, and how, to advertise a service but with
different performances. This is discussed in greater
detail in Section 3.

Service Discovery. When an agent requests a service, it
will first check its own knowledge to see if it is
already aware of the service. If it is, it will contact the
target agent directly. Otherwise it may contact its
upper agent until the available service is found.

The main data type for the advertisement and
discovery is the Agent Capability Table (ACT). Different
strategies can use different kinds of ACTs. The process of
the service advertisement and discovery corresponds to
the maintenance and lookup of the ACTs. The basic
structure of an ACT item consists of two parts: agent
identity and service information. The service information
is system dependent. For example, simple service
information can include: the service name, its
performance, its lifetime, its scope, and so on. Complex
service information can also include the service interface
information. However, as mentioned above, this work
focuses on performance issues.

Two extreme situations can be considered:

1. No service advertisement – results in complex service
discovery. In this situation no ACTs are maintained in
the agents. Each agent has no knowledge of the
services offered by other agents. When a service is
request, a service discovery process is required which
may be complex and traverse a large number of agents
in the system. The service information is pulled from
the agents at discovery time, and so this is a pure
data-pullmodel.

2. Full service advertisement – requires no service
discovery. In this situation, each agent advertises to all
the other agents. Hence each agent has complete
knowledge on the available services in the system and
no discovery process is required. When a request is
made, the service is found in any agents ACT. The

service information has been pushed to the other
agents during the advertising processes, and so this is
a puredata-pushmodel.

Different systems can use different optimisation
strategies to achieve high performance. For example in
static systems, where the frequency of change in the
service information is far less than the frequency of
service request, the pure data-push model can be used to
achieve high performance service discovery. In extremely
dynamic systems, where the frequency change in the
service information is far greater than the request
frequency, the pure data-pull model can be used to
achieve high performance. Most practical systems will
have characteristics in-between these two extremes. The
performance issues are discussed in greater detail in
Section 3.

3. Service Discovery Performance

In this section we introduce the basic performance
issues in the service discovery, since we view the
resource management infrastructure as an agent-based
hierarchical system and the function implementation of
the scheduling and allocation as the process of the service
advertisement and discovery. Some common performance
metrics are given first and different optimisation
strategies are discussed next.

3.1. Service Discovery Metrics

There are kinds of performance criteria that can be
used to describe the service discovery performance part of
the model. What is considered as high performance
depends on the system requirements. However, there are
some common characteristics of the system that are
usually a concern of the system developer. These include:

Discovery Speed
Each request from an agent can pass one or more

agents in order to find a target agent that can provide the
required service. The performance of the discovery
process is mainly based on the number of routing
connections, since the size of data communication is
small. Fewer connections has a quick discovery process,
and the higher system performance. In the whole system,
there may be simultaneous service requests. The average
service discovery speed,v is defined as:

d

r
v = (1)

where r is the total number of requests during a
certain period, andd is the total number of connections
made for the discovery.

System Efficiency
The cost for the service discovery also includes

connections made for service advertisement and data
maintenance. Service advertisement may add additional
workload to the system. For each request to find a
corresponding service, the total number of connections,
c, between agents includes those for the discovery
processes,d, and also those for the advertising processes,
a.

adc += (2)
The efficiency of the system can be considered as the

ratio of the total number of requests,r, during a certain
period, to the total number of connectionsc.

c

r
e = (3)

Load Balancing
In some of the systems when the system resources are

critical, load-balancing may be an important issue. In
this system, no agents are used only for service discovery.
There is no reason to have any agent with a higher
discovery workload than any other. For a system withn
agents, the workload,wk, of each can be described as

kkk iow +=)......1(nk = (4)

where ok and ik are the outgoing and incoming
connection times. We can use the mean square deviation
of the wk to describe the load balancing level of the
system,b:

()
n

ww
b kk

2
−Σ= where

n

w
w kkΣ

= (5)

Success Rate
In some of the performance optimisation strategies the

discovery model cannot guarantee to find the target
service (that may actually exist in the system). However,
in a general system a reasonable service discovery
success rate should always be achieved. The success rate,
f, describes successful service discovery:

%100×=
r

r
f f (6)

Most of the time, these service discovery metrics are
conflictive, that is not metrics can be high at the same
time. For example, a quick discovery speed does not
mean high efficiency, as sometimes quick discovery may
be achieved through the high workload encountered in
service advertisement and data maintenance, leading to
low system efficiency. It is necessary to the critical
factors of the practical system, and then to use the
different performance optimisation strategies to reach
high performance.

3.2. Performance Optimisation Strategies

There are several kinds of performance optimisation
strategies that can be considered. Most have been used in
current practical systems with an assumption that the
performance can be optimised. The effects of these
strategies are not discussed in detail especially when the
dynamics of the system increases. The combination of
these strategies may also lead to a different performance.

Use of cache
Caching previous service discovery results is a good

strategy for performance optimisation that assumes a
request may be required more than once. Cached service
information is expressed as C_ACT. When an agent
sends a request for service discovery, the result can be
stored in C_ACT, and hence looked up when next
requested. If however the service has changed and is not
available any more, the agent may update the C_ACT
and perform another service discovery.

Many current network applications use caches to
optimise performance. Using cached service information
may result in direct service discovery in one step.
Another advantage of using cache is that it adds no
additional data maintenance workload. However, if the
service information changes frequently compared to the
request frequency, using cache may decrease the service
discovery speed. So the efficiency of using cache depends
on the characteristics of the actual system.

Using local and global knowledge
Adding some local or global knowledge to an agent is

also a performance optimisation that assumes that
services are often required by local agents. A request may
need less connections to find the local service as the
higher-level agents need not take part in the discovery
process. The system load can also be reduced.

In order to coordinate the agents to find the services,
two kinds of ACTs can be used in each agent to record
the service details and information, which are local
(L_ACT) and global (G_ACT). Each agent has one
L_ACT to record the service information about the
agents registered with it. If a request is within the
capabilities of the local agents, the agent may directly
dispatch the request to the target agent. The G_ACT in
an agent is actually a copy of its upper agent’s L_ACT.
Thus an agent can have the information of more services
and be able to contact them directly without submitting
the request to the upper agent.

Unlike the C_ACT, additional data maintenance
workload is needed for the L_ACT and G_ACT. There
are basically three ways to maintain their contents.
Firstly, the agent itself can go to pull the corresponding
data directly. For L_ACT, the agent can ask its lower
agents for their L_ACT, and for G_ACT, the agent can
ask its upper agent for its L_ACT. Secondly, the

maintenance of the L_ACT and G_ACT can also be
driven by changes in service. If contents in one L_ACT
of an agent are changed, it may report this to the L_ACT
of its upper agent, and may also inform the change to the
G_ACTs of its lower agents. Thirdly, the L_ACT and
G_ACT can also be updated in the same way as the
C_ACT.

The process for the service discovery using the
L_ACT and G_ACT is also different from that using the
C_ACT. When an agent receives a request, it will look
up its L_ACT. If the agent finds that one of its lower
agents can provide the service, it will dispatch the
request directly to the corresponding agent. Otherwise, it
will look up its G_ACT. If G_ACT shows that another
agent can provide the service, it will dispatch the request
to that agent. If the service is not found in either, the
agent will ask its upper agent for further service
information. After the upper agent returns the result, it
can update its own G_ACT and return the result to the
agent who originated the request.

Limit service lifetime
Another performance optimisation strategy is adding a

service lifetime limitation to the attributes of the service
information. This lifetime should be pre-estimated before
the service is advertised. The agent can check the ACTs
frequently and delete out-of-date service information.
This can avoid unnecessary routing processes and
increase the speed of service discovery. There is also no
additional data maintenance workload. However, the
lifetime of some services in the system may be
unpredictable.

Limit scope
The scope in which a service can be advertised and

discovered can also be pre-defined by attributes to the
service information. The service need only be advertised
within a certain scope of the system, which can reduce
the advertisement and data maintenance workload. The
search for a service can also be limited to a certain scope
avoiding unnecessary discovery processes. However, pre-
knowledge about the service and its requests are needed
to achieve optimisation. Mismatches between the scope
limitation of a service and of a request may result in the
low success rate of the service discovery.

4. Performance Evaluation

In the previous sections a homogeneous agent
hierarchy which has a service discovery capability has
been described. This is used to give a model of the
resource management infrastructure, which is a large-
scale distributed software system with a highly dynamic
behaviour. However, performance evaluation of such a
system is a difficult task, because the system behaviour

will become complex when different optimisation
strategies are used. In this section, a modelling and
simulation environment is introduced to aid the
performance evaluation process. A simplified model of
the resource management infrastructure is given as a case
study and simulation results are included to show the
impact of the choice of the performance optimisation
strategy on the system performance.

4.1. Modelling

There are four kinds of information that effect the
system performance and must be defined in the
performance model. These include: the agent hierarchy,
the services, the requests, and the optimisation strategies.
The modelling and simulation environment provides
graphical interfaces for the user to perform the modelling
activity at both the agent level and the system level. The
only components that exist in the model are agents, so
agent-level modelling can be used to define all the model
attributes for the simulation. However, system-level
modelling is also necessary for modelling agent mobility,
service and request distribution, and so on. A system-
level strategy definition can affect all of the agents in the
model and ease the modelling process.

Table 1. Example model

Agents Upper Agent
gem -

sprite~0……sprite~49 gem
tup~0……tup~49 sprite~9

cola~0……cola~49 sprite~19
tango~0……tango~49 sprite~29
pepsi~0……pepsi~49 sprite~39

(a) Agents

Name Relative
Performance

Freq Lifetime Scope Dist
(%)

HPC 1000 5 Unlimited Top 20
HPC 600 10 Unlimited Top 40
HPC 200 20 Unlimited Top 60

(b) Services

Name Relative
Performance

Freq. Scope Dist.
(%)

HPC 100 5 Top 80
HPC 300 10 Top 60
HPC 500 20 Top 40
HPC 800 40 Top 20
HPC 1000 60 Top 10

(c) Requests

The attributes of an example model are shown in
Table 1. This is composed of about 250 agents, each
representing a high performance computing resource that
may provide a computing capability with a different
performance. These agents are organised in a hierarchy,
which has three layers. The identity of the root agent is
gem. There are 50 agents registered togem, four of
which each also have 50 lower agents. The hierarchy is
illustrated in Table 1(a).

To simplify the modelling processes, we define the
services and requests in the agents at the system level.
The name of the services and requests are allHPC, but
with different relative performance values. In practical
systems, service performance can be any value such as
execution time, memory size, and so on, which can be
predicted using the tools such as PACE [15]. The
frequency value of the service, 5, for example, means the
service performance will change between 0 and the
performance value once every 5 steps during the
simulation. The frequency value of the request, 5, for
example, means a request will be sent once every 5 steps
during the simulation. A step can be designed as an
arbitrary number of seconds. In practical systems, the
frequency values must be monitored while the system is
operational. The performance optimisation strategies of
the lifetime and scope limitations are not used in the
model. The distribution value is used to define how many
agents will be configured with the corresponding service
or request. The simulator will choose agents randomly to
be configured with these system level definitions before
simulation begins.

Table 2. Performance optimisation strategy

Experiment Number
Optimisation Strategy 1 2 3 4 5 6

Using C_ACT
Using L_ACT
Using G_ACT

Updating L_ACT*
Updating G_ACT*
Advertising L_ACT
Multicasting L_ACT

* Here the updating frequency was once every 10 steps.

Finally, the model must define how each agent uses
the cache, local, and global knowledge to optimise the
performance. In this case study six experiments have
been considered, each of which has the same
configurations as described in Table 1, but has different
optimisation strategies as described in Table 2. To
simplify the experiments, we only define the strategies at
the system level, which means all of the agents in the

model must use the same performance optimisation
strategies. A mixture of optimisation strategies is possible
but is not considered in these experiments. In the
simulation results included in Section 4.2, a comparison
of the different strategies is given by considering their
impact on the system performance.

4.2. Simulation

When the simulation begins, a thread is created to
calculate the statistical data step by step. The phase for
request sending and the service discovery is the key part
of the whole simulation process. The simulation
environment can show the results in multiple views,
including a step-by-step, accumulative view etc. For
example, Figure 2 shows the simulation results for
experiment 4. The number of requests (r), the
connections for advertisements (a), the connections for
discovery (d), the discovery speed (v), and the system
efficiency (e) are all shown. We assume that the load
balancing and discovery success rate are not critical in
this study. Attention is given to the discovery speed and
the system efficiency.

(a) Step-by-step view (b) Accumulative view

Figure 2. Simulation views

The Simulation results for all of the experiments are
summarised in Table 3. Each of the six situations are
described in detail below.

Table 3. Simulation results

Experiment Number
Metric 1 2 3 4 5 6

r 12296 12355 12576 12560 12645 11715
a 0 0 5604 8051 10172 285148
d 65595 51113 7435 6901 6910 7056
v 0.18 0.24 1.69 1.82 1.82 1.84
e 0.18 0.24 0.96 0.84 0.74 0.04

Note: All values are accumulative results after 200 steps.

In the first experiment, no strategies are selected.
Each time the request arrives, a lot of connections must
be made and traversed in order to find the satisfied
service. In this situation, the discovery speed and system
efficiency are both rather low.

In the second, the cache is used in each agent, which
needs no extra data maintenance and improves the
discovery speed and system efficiency a little. This is
because the dynamics of the services reduce the effects of
the cached information and so becomes unreliable.

L_ACT is added in each agent in the third
experiment. Each time the service performance changes,
the corresponding agent will advertise the change
upward in the hierarchy. This adds additional data
maintenance workload to the system, which decreases the
discovery workload extremely. So the discovery speed
and the system efficiency are all improved.

G_ACT is also added in the fourth experiment. Each
agent will get a copy of the L_ACT of its upper agent
once every 10 simulation steps, which will add additional
data maintenance workload. From the simulation results,
we can see this improves the discovery speed further. But
the system efficiency decreases a little because of the
additional data maintenance.

Another maintenance of the L_ACT is added in the
fifth experiment. Each agent copies the L_ACTs of its
lower agents once every 10 steps. This doesn’t improve
the discovery speed any more and only adds more data
maintenance workload, which decreases the system
efficiency further.

Another maintenance of the G_ACT is added in the
sixth experiment. The change of the L_ACTs will be
passed to the G_ACTs of the lower agents. This improves
the discovery speed only a little, but adds further data
maintenance workload, which decreases the system
efficiency extremely.

Figure 3. Choice of optimisation strategies

The impact of the choice of the optimisation strategies
on the discovery speed and the system efficiency, is
shown clearly in Figure 3. It can be seen that the fourth
experiment has a good balance between the discovery
speed and the system efficiency for this example model.
It has a higher discovery speed in comparison to the
third, with only slight lower system efficiency.

Changing the G_ACT update frequency will also
change the performance of the model. Figure 4 shows the
relation between the G_ACT update frequency and the
system performance. In these experiments, the strategies
that are used are all the same as described in the fourth
experiment of Table 2. The only difference is the
G_ACTs in the agents are updated with different
frequencies, which may lead to differences in the amount
of system workload for service advertisement. The best
trade-off between discovery speed and system efficiency
is once every 20 simulation steps in this example model.

0

20

40

60

80

100

120

140

160

180

200

1 2 5 10 20 30 40 80 Never

G_ACT Updating Frequency in Steps

v,
e

(*
1

0
0

)

v

e

Figure 4. Choice of G_ACT update frequency

In summary, the example model should use all of the
C_ACT, L_ACT, and G_ACT. L_ACT should be
maintained by the real-time service advertisement. The
G_ACT should be maintained by updating once every 20
steps. In fact, the performance of the example model can
be improved further if using agent level modelling.

Different agents can use a mixture of different strategies
to achieve higher performance of the whole system. This
is not discussed in detail here.

5. Conclusions

The resource management system in the grid
computing environment will be a large-scale distributed
software system with high dynamics. In this work, we
have developed a homogeneous agent-based hierarchical
model to meet the requirements of the scalability. We
also abstract the resource management, scheduling and
allocation into the processes of the service advertisement
and discovery. The performance issues arise from the
high dynamics of the system. There are several common
performance optimisation strategies can that be used in
this system. However, the evaluation of their impacts on
the system performance is difficult. In this work a
modelling and simulation environment has been
implemented to aid the performance evaluation process.
A case study is given and the simulation results show
how to examine the different metrics for the system to
order to achieve higher performance.

Our future work will focus on the implementation of a
resource management infrastructure using the
methodology of the agent hierarchy and the service
discovery. The infrastructure will be integrated with the
PACE functionality [15], which can be used to predict
the service performance information dynamically. At the
meta level, the performance optimisation strategies of the
agents should have the ability to be adjusted according to
real-time performance evaluation results produced by the
modelling and simulation environment introduced above.
The overall aim is to keep the whole infrastructure more
efficient to fulfil the functions of resource management.

References

[1] K. Amold, B. O’Sullivan, R. Scheifer, J. Waldo and A.
Woolrath, “The Jini Specification”, Addison Wesley,
1999.

[2] M. Baker, R. Buyya, and D. Laforenza, “The Grid:
International Efforts in Global Computing”, to appear in
ACM Computing Surveys, 2000.

[3] J. Bray, C. Sturman, “Bluetooth: Connect Without
Cables”, Prentice Hall, 2000.

[4] J. Cao, D. J. Kerbyson, E. Papaefstathiou, and G. R. Nudd,
“Modeling of ASCI High Performance Applications Using
PACE”, in Proceedings of 15th Annual UK Performance
Engineering Workshop, Bristol, UK, pp. 413-424, 1999.

[5] J. Cao, D. J. Kerbyson, E. Papaefstathiou, and G. R. Nudd,
“Performance Modeling of Parallel and Distributed
Computing Using PACE”, in Proceedings of 19th IEEE
International Performance, Computing and
Communication Conference, Phoenix, Arizona, USA, pp.

485-492, 2000.
[6] J. Cao, D. J. Kerbyson, and G. R. Nudd, “Dynamic

Application Integration Using Agent-Based Operational
Administration”, in Proceedings of 5th International
Conference on Practical Application of Intelligent Agents
and Multi-Agent Technology, Manchester, UK, pp. 393-
396, 2000.

[7] H. Casanova, and J. Dongarra, “Applying NetSolve’s
Network-Enabled Server”, IEEE Computational Science &
Engineering, Vol. 5, No. 3, pp. 57-67, 1998.

[8] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S.
Martin, W. Smith, and S. Tuecke, “A Resource
Management Architecture for Metacomputing Systems”, in
Proceedings of IPPS/SPDP '98 Workshop on Job
Scheduling Strategies for Parallel Processing, 1998.

[9] S. J. Chapin, D. Katramatos, J. Karpovich, and A.
Grimshaw, “Resource Management in Legion”, Future
Generation Computer Systems, Vol. 15, No. 5, pp. 583-
594, 1999.

[10] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski,
W. Smith, and S. Tuecke, “A Directory Service for
Configuring High-Performance Distributed
Computations”, in Proceedings of 6th IEEE Symposium on
High-Performance Distributed Computing, pp. 365-375,
1997.

[11] I. Foster, and C. Kesselman, “The Grid: Blueprint for a
New Computing Infrastructure”, Morgan-Kaufmann, 1998.

[12] N. R. Jennings and M. J. Wooldridge (eds), “Agent
Technology: Foundations, Applications, and Markets”,
Springer-Verlag, 1998.

[13] W. Leinberger, and V. Kumar, “Information Power Grid:
The New Frontier in Parallel Computing”, IEEE
Concurrency, Vol. 7, No. 4, pp. 75-84, 1999.

[14] H. Nakada, H. Takagi, S. Matsuoka, U. Nagashima, M.
Sato, and S. Sekiguchi, “Utilizing the Metaserver
Architecture in the Ninf Global Computing System”, in
Proceedings of High-Performance Computing and
Networking , Lecture Notes on Computer Science 1401,
Springer-Verlag, pp. 607-616, 1998.

[15] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C.
Perry, J. S. Harper, and D. V. Wilcox, “PACE – A Toolset
for the Performance Prediction of Parallel and Distributed
Systems”, International Journal of High Performance
Computing Applications, Special Issues on Performance
Modelling – Part I, Sage Science Press, Vol. 14, No. 3, pp.
228-251, Fall 2000.

[16] R. Raman, M. Livny, and M. Solomon, “Matchmaking:
Distributed Resource Management for High Throughput
Computing”, in Proceedings of 7th IEEE International
Symposium on High Performance Distributed Computing,
Chicago, Illinois, July 1998.

[17] S. H. Russ, K. Reece, J. Robinson, B. Meyers, R. Rajan,
L. Rajagopalan, and C. Tan, “Hector: An Agent-Based
Architecture for Dynamic Resource Management”, IEEE
Concurrency, April-June, pp. 47-55, 1999.

[18] W. Yeong, T. Howes, and S. Kille, “Lightweight Directory
Access Protocol”, RFC 1777, Draft Standard, 1995.

